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SUMMARY 

Eight numerical schemes (first-order upstream finite difference, MacCormack, explicit Taylor-Galerkin, 
random choice, flux-corrected transport, ENO, TVD, and Euler-Lagrange methods) are compared on the 
basis of their computational efficiency for one-dimensional non-linear convection-diffusion problems. For 
the ideal chromatographic equation for which an exact solution exists, errors plotted against computational 
times show that the best methods are the random choice, Euler-Lagrange and flux-corrected MacCormack 
methods. Even when significant diffusion is added to the model, steep gradients are possible because of non- 
linearities. In such an instance, the random choice and flux-corrected transport methods give the best 
performance. One can now tackle more complicated problems and refer to this comparative study in order 
to choose an adequate numerical method which will provide sufficiently accurate results at a reasonable 
cost. 

KEY WORDS Conservation laws Essentially-non oscillatory methods Total variation diminishing methods 
Flux-corrected transport methods Random choice method Euler-Lagrange method 

INTRODUCTION 

Numerical solutions have a distinctive advantage over analytical solutions in that they enable us 
to solve more complex-and therefore more realistic-problems. For instance, let us consider the 
case of a chemical species carried along in a plug flow. As a first approximation, one can describe 
the spatial and temporal changes in concentration of the solute by the linear advection equation 
which possesses a convenient analytical solution. However, it is possible that axial diffusion will 
not be negligible, or that the solute will undergo some reaction, as in a tubular reactor. In such 
event, the relevant model equation might not be solvable analytically, or solutions might exist for 
a limited number of situations only (e.g. the choice of boundary and/or initial conditions might be 
restricted). Numerical techniques provide a powerful way to overcome these limitations. Yet, 
while analytical solutions are exact answers to less complex problems, numerical methods solve 
more true-to-life problems with some errors. For some situations, these errors can become 
significant. For example, classical numerical techniques do not work well for linear problems 
where convection prevails and where the solution moves as a wave limited by steep fronts 
because, under such conditions, the computed approximations either exhibit large oscillations or 
are smeared excessively. These difficulties are often exacerbated for non-linear problems. The 
latter allow the formation of steep gradients and discontinuities even if the initial data is smooth. 
Furthermore, non-linear problems are difficult to handle because instabilities cannot be predicted 
by a linearized stability analysis, and the numerical method may predict a solution that is 
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physically unreasonable. Nevertheless, considerable work has been put into devising numerical 
techniques capable of overcoming the above-mentioned difficulties. The objective of this paper is 
to compare several numerical methods that a preliminary study' has shown to be particularly 
appropriate for problems marked by strong convection and non-linearity. 

The eight schemes studied are: (1) first-order upstream finite difference method (2) MacCor- 
mack method; (3) explicit Taylor-Galerkin method; (4) MacCormack method with flux-correc- 
tion; (5) Total Variation Diminishing (TVD) method; (6) Essentially Non-Oscillatory (ENO) 
method; (7) random choice method and (8) Euler-Lagrange method. There are other methods, 
such as the moving nodes method of Miller and and methods using equidistribution 
principles, such as those by Hu and Schiesser4 and Smooke and Kozykowski,' that have not been 
applied in this study. Although the qualitative behaviour of the eight schemes we have chosen is 
well known, it is less clear how their computational efficiencies compare. However, as noted by 
Fletcher,6 it is often preferable to estimate the quality of a numerical scheme by considering not 
only its ability to produce accurate solutions, but also its capacity to produce them quickly. 

By applying each of the above methods to a non-linear chromatography problem for which an 
exact solution is available, we have evaluated their performance with respect to two criteria: 
accuracy and computational time. The first section of this paper describes the model equation 
used to test the numerical schemes which are presented in the second section. The last section 
shows that there is no ideal method. Instead, each method offers a particular trade-off between 
accuracy and time requirement. If one knows what trade-off is acceptable to solve a given 
problem, then a computational efficiency diagram, such as the one presented in this study, should 
provide some help in choosing a priori a numerical method suited to the application 

MATHEMATICAL MODEL 

The difficulties one faces when seeking solutions to models of capillaries in biological tissues 
provide the motivation for this study. Within each capillary-tissue unit, a set of partial differential 
equations is solved numerically to predict transport and exchange rates.' The problem is 
complicated by strong axial convection (but there is also diffusion) and non-linear processes 
governing radial transport and reaction. In addition, proper modelling usually requires solving 
simultaneously for several units in order to account for the heterogeneity of flow within the organ. 
But, calculations need to be fast so that investigators can analyse the response of the system to 
different sets of parameters interactively.* Thus, there is a clear need for numerical techniques 
capable of providing rapid and accurate solutions. 

In order to find out which numerical method would best suit these requirements, we have 
compared several existing schemes by applying them to the closely related problem of non-linear 
chromatography. Adsorption columns and microvascular vessels are obviously very different 
physical systems. Nevertheless, the partial differential equations describing the distribution of 
solute between flowing phase and adsorbant in chromatographic columnsg are very similar to the 
equations used in two-region models of capillaries." The general system of equations applicable 
to both situations is given by equation (1) of Reference 11 when it is written for two compartments 
(the flowing and stationary phases which are either the solvent and the adsorbent or the blood 
and the tissues) and where-to account for nonlinearities-the mass transfer and reaction 
coefficients might depend on the concentrations instead of being constant. For the purpose of this 
study, we further simplify this model by assuming that: (a)axial diffusion is negligible in the 
stationary phase, (b) there is no reaction and (c) there is an equilibrium at the interphase. 
Specifically, the concentration of solute in the fixed phase, c2, is related to the concentration in the 
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moving phase, cl, through the non-linear Langmuir isotherm so that c2 =f(cl)=acl/(l +Kc,). 
With these assumptions, the model reduces to one partial differential equation: 

where T and 5 are dimensionless temporal and spatial variables, respectively, Pe is the Ptclet 
number and 4c1)  is defined as 

where E =  V2/V1 denotes the ratio of the volume of the stationary phase to that of the flowing 
phase. Equation (1) is solved for its single unknown, cl. Once the concentration of solute in the 
moving fluid is known, the concentration in the fixed phase directly follows from the equilibrium 
relation. The auxiliary conditions associated with Equation (1) are: 

cl(L O)=i(t), ~ ~ ( 0 ,  ~ ) = b ( r )  and - = O .  ((3<=' (3) 

Note that, in chromatography, a boundary condition more frequently used at the inlet is the 
Danckwerts boundary condition:' 

but with convection dominating over diffusion (i.e. for large Pe number) this is essentially 
cl(O, z)=b(z) ,  which is the condition we used. 

An even simpler model is derived when axial diffusion in the flowing phase is assumed to be 
negligible. l 3 , I 4  Then the right-hand side of equation (1) is replaced by zero and the boundary 
condition at the outlet is dropped. The resulting problem is often referred to as the ideal, 
non-linear chromatography model.' Although its physical significance is somewhat limited, this 
model provides an interesting test for the numerical methods we intend to compare. Since, for 
certain choice of auxiliary conditions, there exist exact solutions to equation (1) where the 
diffusion term has been removed, it is possible to analyse quantitatively the performance of the 
numerical methods. The ideal, non-linear chromatogrphic equation also constitutes a good test 
because it has the ability to produce solutions with discontinuities or shocks. Since these are 
always a source of numerical difficulties, it will be instructive to see how well the numerical 
schemes can handle them. Moreover, if the methods perform well in the limiting case where there 
is no axial diffusion, they should also produce good results for actual situations where shocks do 
not occur but very steep gradients are observed. Ma and Guiochon16 mention that for typical 
columns in High-pressure Liquid Chromatography (HPLC) apparent axial dispersion coeffic- 
ients are in the range from 1 to 6 x cm2 s-l ,  which combined with a fluid velocity of 
0.15 cms-l and a column length of 15 crn (these are the values used in their simulation), places 
the Peclet number between 22 500 and 3750. Sometimes, however, the Peclet number is not that 
large. In capillaries of the heart, for example, typical values of the effective Pkclet number for axial 
diffusion are in the range from 100 to 1000. Thus, numerical schemes are needed that not only 
perform well in the ideal case, but can also account for a large range of axial diffusion. 
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THEORETICAL RESULTS 

Test problem: exact concentration profiles 

The most obvious way to study the accuracy of a numerical method is to compare the 
computed approximation to an exact answer. Thanks to the method of characteristics, it is 
possible to construct (at least for times not too large) the exact solution to the ideal chromato- 
graphic equation when some solute is injected into a clean column. The corresponding auxiliary 
conditions are: 

cin if O S T S T ~ ,  
0 if t > z i .  c,(<, O ) = O  and c,(O, z)= (5)  

The situation is depicted in Figure 1. At the initial time, a discontinuity appears at 5 = O .  Since 
the equilibrium isotherm we have chosen is convex upward, Rhee et a/.' show that the so-called 
entropy condition (that is the condition under which a discontinuity is a shock) is a(c<)sa(c:), 
where the superscripts t and r denote, respectively, the left and right side of the discontinuity. For 
the Langmuir isotherm, this condition simplifies to: c( 2 c;. Thus, from the discontinuity at (5  = 0, 
T = 0), a genuine shock forms that will propagate with speed v, given by the jump condition: 

Here, the function g(cl) stands for the sum c1 +Ef(cl). g is sometimes called the column isotherm. 
Equation (6) also introduces the notation [.I which is traditionally used to indicate the jump 
across the discontinuity of a given quantity. 

At the moment when the solute injection is stopped, another discontinuity appears at the inlet 
of the column. Since this time the entropy condition is not satisfied, the discontinuity gives rise to 
a centred simple wave that will expand. In the ( 5 ,  T)-plane that wave is represented by a manifold 
of straight characteristics emanating from the same point (0, ti) and having slope (dz/dr) = a(cl), 
where c1 varies from 0 to tin. For a given value of the solute concentration, however, the slope 
dz/dt is constant and is equal to (~-q)/t. Therefore, for any point in the centred wave, the solute 
concentration is given by cl=-"l-J(( EU )]. 

K t- T i ) / <  - 1 (7) 

We note that the largest speed in the rarefaction wave, 1/o(cin), is greater than the shock 
velocity. This means that the trailing wave moves faster than the discontinuity and, ultimately, 
will catch up with it. Prior to the catch-up time T, the jump in concentration across the shock is 
constant. Thus, the shock path in the plane of the characteristics is a straight line. At time T, the 
characteristic from the centred wave bearing the concentration cin intersects the shock path. This 
corresponds to the situation depicted in Figure l(c): the expansion wave has just caught up with 
the front. For the later time (t > T ) ,  the intensity of the shock decreases, as Figure l(d) shows, and 
the shock path is not straight anymore. 

For the quantitative part of our analysis, we will limit ourselves to times below T. Therefore, 
the concentration profiles we will compute should resemble the one displayed in Figure l(b). The 
solution includes three constant states separated by an expansive wave and a shock discontinuity. 

Solute quantities and their variations 

Most of the numerical methods compared in this study have been designed to solve hyperbolic 
conservation laws of the form u, + F(& = 0. If we define ( u )  as the total amount of the quantity 
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Figure 1. Characteristics (upper panel) and concentration profiles at various instants (lower panels) for the injection of 
a fixed quantity of solute into an ideal column initially clean, equation (5). c< and c; are the values of the concentration to 
the left and right of the discontinuity, respectively; T is the time until which the intensity of the shock remains constant. 

u in some closed region, then the fundamental assumption underlying the conservation law is that 
the rate of change of (u) is equal to the net flux of u across the boundaries of that region.I7 This 
must hold whether u is smooth or not. It is an important fact to consider if we want to apply 
correctly the conservative numerical schemes to the non-linear chromatographic equation in the 
presence of discontinuous concentration curves. 
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In the absence of diffusion, it is easy to write equation (1) in divergence form as 

a w l )  as(cl)-,. +-- aT a t  
One can pick any pair of functions (R,  S) provided R'(c,) equals [1+ $'(cl)]S'(cl). Three possibili- 
ties easily come to mind. R could be set to be (1) the concentration of solute in the moving phase, 
cl; (2) the concentration of solute in the stationary phase, c2 =f(cl); or (3) the combination of 
these two concentrations defined earlier, g(cl). For the sake of clarity, we will say that equation (1) 
with no diffusion is written in the gl-form, V2-form or 9-form if R(cl) is clr c2 or g(cl), 
respectively. This notation is summarized in Table I. 

We might regard these three forms of the ideal chromatographic equation as perfectly 
equivalent conservation laws since they all represent the same physical phenomena. The %?l-form 
is particularly attractive since its solution provides directly the solute concentration in the 
flowing phase which is the quantity we are seeking. However, only the %form of the conservation 
law is physically acceptable. Let us consider a chromatographic column for which a fraction 4 of 
the total volume is occupied by the flowing phase. Then the quantity G=4g represents the 
total concentration of solute (held both in solution and in adsorbant) at  a given time and point in 
the column. In addition, a mass balance carried over the entire system shows that ( G ) ,  the total 
mass of solute in the chromatographic column, varies only when solute is fed into the column or 
exists from it. On the other hand, since mass is constantly transferred between moving and 
stationary phases as bands of solute propagate along the column, there is, in the general case, no 
physical reason indicating that the time variations of the quantities (cl) and (cz) should be 
equal to the net flux of solute entering the system. Therefore, while the three forms of equation (8) 
are all mathematically correct conservation laws, physical insights indicate that the %form of the 
model equation is the right form to use in order to obtain meaningful results.18 

Table I. Three possible ways to put the ideal, non-linear chromatographic equation into the form of equation (8) and the 
corresponding first-order upstream finite difference schemes 

~ 

Finite difference algorithm. 
knowing 4, find C;+l with 

91 
AT 

e l l+ '  =cl;---[M(cl~)-M(cl~_,)] A t  
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Let us conclude by emphasizing that in our definition of the 9-form the variable is the column 
isotherm, g, and the flux is a function of that variable cl=g-'(g). This is different from the 
approach of Rouchon et a1.15 who, by reversing the role of T and (, considered an equation in the 
9-form but with c1 as the variable and g(cl) as the flux function. Our approach has the 
inconvenient feature that, in the solution process, we must at each time step go from c1 to g and 
back from g to cl. Although this does not increase the computational load very much (see section 
on MacCormack method below), it can become problematic if there is no easy way to obtain c1 
from g. However, it has the marked advantage that axial diffusion can be included. 

NUMERICAL METHODS 

We now describe the numerical methods as applied to the model of single solute chromatography 
with non-linear equilibrium (equations (1)-(3) with or without diffusion). In the first part, we 
present numerical methods for conservation laws which require the model equation to be put into 
the 9-form defined earlier. In particular, because of its simplicity, the first-order upstream finite 
difference scheme is used to illustrate the general features associated with the application of 
conservative methods to the chromatographic equation. In a second part, we report on two 
schemes (random choice method and explicit Euler-Lagrange method) which can be applied to 
the more general class of hyperbolic equations. With the exception of the Euler-Lagrange 
method, all the schemes are implemented on a fixed mesh. 

Conservative numerical methods 

For fixed grid methods, the domain where the solution is sought is replaced by a regular mesh 
{(ti=iAt, ~ " = n A r )  1 i=O, 1, . . . , N ,  and n=O, 1, . . . ,}. The grid spacing is simply A t  = l/Ns, 
since t belongs to [O; 11. The purpose of the numerical method is to provide, at each node, an 
approximation ul = u(&, T") to the exact solution u,,(ti, z"). 

First-order upstreamfinite difference method. This finite difference method has the advantage of 
being straightforward and easy to implement. To evaluate the first derivative of the convection 
term, upstream weighting is preferred to central differencing because that provides some stability 
by introducing a certain amount of artificial diffusion. The latter helps dampen any oscillation. 
However, if too much numerical viscosity is added, then the solution is smoothed excessively. 
With the explicit Euler method to step forward in time, the scheme written for the general 
conservation law, u, + F(u){ =0, is 

where the consistent flux function is simply F(ul)= F(ul). Equation (9) defines the typical 
structure of a conservative finite difference method.'* Writing this equation over all values of 
i and summing gives 

(u)"+' = (u)" - A T ( , F $ ~  -Pi), (10) 

where ( u )  = x u i .  This is the discrete equivalent of the fundamental assumption underlying every 
conservation law, and meaning that the temporal variations of the total amount of the quantity 
u in the system are solely dependent on the net flux of material at the inlet and outlet of that 
system. Consequently, conservative methods must be applied to the %-form of the chromato- 
graphic equation. 
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To illustrate the disastrous (and insidious) effects of choosing the physically wrong form of the 
conservation law, we have used the first-order upstream finite difference scheme to solve the ideal 
chromatographic equation put into each of the three forms defined in the previous section. The 
complete algorithms are summarized in Table I. Typical solutions for the elution of a partially 
saturated column are displayed in Figure 2(a). Although the three concentration profiles have the 
same shape, the position of the front is different. Figure 2(b) shows that this is not due to a lack of 
accuracy, since, in the limit where A7 and A t  go to zero, the front velocity computed with each 
form of the finite difference scheme converges to the shock speed predicted by the 
Rankine-Hugoniot relationship written for the corresponding hyperbolic conservation law. In 

C1 

0.25 

0.00 

- c1-fonn 

- G-form 

- CZ-form 

5 
0.01 

0.00 - 
LI 
b 

2 
4.01 - 

m CI-form 
4 cz-fnm 

G-hnm 

-0.024 . I , I . I . I , I . 
0.000 0.002 0.004 0.006 0.008 0.010 C 

-0.25 
0.00 0.25 0.50 0.75 

I1 2 

i 
30 

AS 

Figure 2. (a) Comparison of the numerical solutions provided by the three finite difference algorithms of Table I for the 
elution of a chromatographic column saturated (cl = 1) between 5 =0.10 and t=0.35 and clean (cl =0) everywhere else. 
a = 2, K = 2, E = 1.5, A< = 1/800, Ar/A< = 1. Solutions are shown at time T~~~ =0.5. (b) Error in the propagation speed of the 
front for different grid spacing. The conditions are the same as in Figure 2(a) except for A t  which varies from 1/100 to 
1/1600. The error is defined as (u-ux), where u is the computed mean velocity between T = O  and ~ = @ 4  and ox is the 
analytical value of the Rankine-Hugoniot shock speed for the conservation law written in the X-form with X =V1, %‘2 or 

Y. In the numerical approximation the front is located where c1 =(c; +c;)/2 and (ac,/at)iO. 
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fact, with Lax and Wendroff's theorem,'' one can show that the approximations provided by the 
numerical method in the V1-, V2- and 9-form converge to the entropy satisfying weak solution of 
the conservation law written in the same form (since the flux functions M, N o t - '  and g- l  are all 
convex, the entropy condition is merely ur =- u' for u = cl, c2 and 9). As a result, only the solution 
provided by the %form is physically acceptable. 

We finish the description of the finite difference method by indicating how it can be extended to 
include diffusion. It is easily done by noting that the modelling equation with a diffusion term is 
also a conservation law (however, it is no longer hyperbolic):18 

Thus, we need only modify the numerical flux function as 

MacCormack method. The MacCormack method is a difference scheme using two steps to 
achieve second-order accuracy in both space and time. It was introduced to solve the time- 
dependent compressible Navier-Stokes equations." Its application to the adsorption problem 
has been derived by Finlayson.' For the 9-form of equation (l), the'method reads: 

AT AT 
A t  PeAc2 

g i * n + l -  -gj n --(cl;+l-cl;)+- (cl;+1-2cl;+cl;-l) 

The addition of diffusion follows work by Anderson et aL2' on viscous Burgers equations. Note 
that the two equations above can easily be recast into one equation similar to equation (9) 
showing the conservative property of the MacCormack method. Like all the conservative 
schemes of this section, the MacCormack method enable us to evaluate g"+' from 9". However, 
the complete solution process involves two additional steps: (1) obtain g" from cl; and (2) deduce 
cl" from gnf'. Although necessary, these two steps do not increase the computational load very 
much since: (1) except at the starting time, when go is not known, gn and c; are already known 
from the previous time level; and (2) by going from g"+l to c;+', we actually compute the 
numerical flux for the next time level and this is a calculation that would have to be done anyway 
with a conservative scheme except, of course, when the final time has been reached. 

Taylor-Galerkin method. Galerkin finite element solutions to convection-dominated problems 
often exhibit undesirable oscillations. Noting that this might be caused by the finite difference 
approximation of the time derivative, D ~ n e a " , ~ ~  created a way to improve typical time-stepping 
methods. This was achieved by using Taylor series expansions to evaluate the time derivative. The 
derivation of the method for the adsorption problem requires special formulae in order to expand 
the nonlinear terms in terms of the trial functions N j .  F i n l a y ~ o n ' . ~ ~  found that the following 
scheme worked well: 
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Finally, the complete scheme is 

When the left-hand side of the equation (15) is 'lumped', the Taylor-Galerkin method is clearly 
a conservative and consistent finite difference method. To show that the finite element version 
without lumping also underlies a conservation principle, let us assume that the solution u to the 
general conservation law u, + F ( U ) ~  = O  is constant everywhere outside some finite interval [ti, [k]. 
The total quantity of u within the interval [ t j -m; & + m ]  is 

Summing equation (15) (written in the general case, i.e. by replacing g and c1 by u and F(u) 
respectively) for i ranging from j - rn + 1 to k + rn, we obtain 

AT k + m - 1  

A u ~ - ~  + 2 A u ~ - ~  + 1 + 1 A U i  + d  +* + 1 = -- ( F k + ,  - Fj-m). (17) 
i = j - m + 2  A t  

where Au=unf l -u" .  Since u is constant outside [tj, t k ] ,  we have, for rn large enough: 
A U ~ - , = A U ~ - , + ~  and A u k + m = A u k + m + l .  Therefore, equation (17) reduces to 

k f m  

--AT( F k  + m - p j -  m )  = A t  C A U i  = <U>?TJm; k + m) - <U>yj  - m; k + m) (18) 
i = j - m + l  

showing that the variations of the total quantity of u within the region considered depend on the 
net flux of u across the boundaries of that domain. 

Flux-corrected transport. With the flux-corrected transport method, we switch to a class of 
conservative schemes referred to as high-order or high-resolution methods. To belong to that 
category, a numerical method must be at least second-order accurate away from the front and be 
able to keep the front steep without any oscillation.18 

To achieve a high-resolution, the flux-corrected transport method tries to average two kinds of 
numerical fluxes: (1) high-order fluxes from schemes that can keep the front steep but oscillate and 
(2) low-order fluxes from methods that do not oscillate but smooth the front exce~s ive ly . '~~~ 
A flux-correction step can be added to any method. To a certain extent, it acts like a filter that 
would eliminate unwanted oscillations or overcome excessive smearing. 

The version we use in this study follows work by Book and Bori~.'~,'' The flux-correction is 
applied to the MacCormack method, equation (13), according to equations (6.22)-(6.29) of 
Reference 1 when the variable u is replaced by the column isotherm, 9, and the numerical flux 
function, u?/2, is changed to c l i  for the ideal model or cli-(cli+ -cli)/(PeA() in the presence of 
diffusion. 

Total variation diminishing methods. The fact that a numerical method is Total Variation 
Diminishing (TVD) is sufficient to ensure that the method is stable (precisely TV-stable). If in 
addition, it is consistent and conservative then convergence is guaranteed." These properties 
have served as foundations for a great variety of TVD schemes. The key in the development of 
these methods lies in the choice of the numerical flux. The latter must be limited so that the total 
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variation of the method does not increase. The basis for this type of high-order methods have 
been explained by Harten, Yee et al. and Sweby.28-30 

The TVD method used in this study is a second-order method explained in Chen et aL31 
A second-order Runge-Kutta method is employed to move the solution forward in time. The 
algorithm applied to the general conservation law, u, + F(u), = 0, is described by Finlayson' 
(equations (6.92)-(6.101)). The application of the TVD scheme to the chromatographic equation 
requires to (1) compute g" =g(c l ) ;  (2) advance the solution by one time level with the TVD scheme 
where the general variables u and F(u) have been replaced by the appropriate unknown and 
numerical flux, as shown for the FCT scheme and (3) go back from g to c1  with c'i" = g -  '(g""). 

Essentially non-oscillatory method. E N 0  methods also belong to the class of high-resolution 
methods. Shu and Osher have presented several versions of E N 0   method^.^^,^^ The simplest of 
them, namely the third-order ENO-Roe method, is used here. Integration in time proceeds with 
a third-order Runge-Kutta method. In space, however, the scheme consists in finding a third- 
order polynomial, P 3 ( t ) ,  which interpolates the set of values H(ti+ Here, H is the primitive 
function of h ( ( )  which is such that 

Then, the net flux going into the cell between and is simply 
9i+ 112 -9;- I/z =P3(5i+ 1 /2 ) -  Pi(5i- 1/2) .  To avoid the formation of oscillations, P 3  is construc- 
ted in an E N 0  fashion. The complete scheme for a conservation law of the form, u, + F(u),; = 0, is 
given by equations (6.107)-(6.124) of Reference 1. These can be easily modified to solve the 
%form of the chromatography problem, as described earlier. 

It is important to note that the E N 0  methods of Shu and Osher were designed with periodic 
boundary conditions. Although these are necessary to determine P3,  they are not suitable for the 
modelling of adsorption columns. To overcome that difficulty, Finlayson' proposes to use 
lower-order formulae at the inlet and outlet of the domain. Thus, for the second ( j  = 1) and next to 
last ( j = N , -  1) points, we replace the third-order polynomial P 3  by a polynomial of degree 2 and, 
for the last node ( j = N , ) ,  we use a polynomial of degree one. 

Other numerical methods 

Unlike conservative methods which must be used with the physically right form of a conserva- 
tion law, the two schemes presented below can be applied to any form of equation (1). The 
%I-form, however, is the most appropriate since its solution directly provides the moving phase 
concentration, cl, which is the quantity measured experimentally. 

Random choice method. As reported by H ~ l t , ~ ~  many authors have contributed to the develop- 
ment of the random choice m e t h ~ d . ~ ~ - ~ '  The version presented below proceeds in two steps. At 
each time level n and for each grid point t i ,  a Riemann problem defined by the ideal model in the 
V1-form and the initial condition: 

is first solved. The solution at (ti+ 1/2 +&,+ l A t ,  r " + A ~ / 2 )  is called 

(21) 
The procedure is then repeated. Another set of Riemann problems is formed and, from the values 

n + 1 2  cli+1/2 =w((i+1/2+~2("+1/2)A5, F+ 1'2)- 
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of the intermediate solution at nodes ( i -  1/2) and ( i+  1/2), we deduce the new value of the 
concentration: c1!+' = w (ti+ + 02("+ ')A(, 7"' 'I2). 

In the expressions above, 8 is a random variable. Its purpose is to note that, on a fixed grid, 
a discontinuity arising from a shock might be located between two nodes. Thus, after one full time 
step, the solution can be off a distance A</2 and such errors can accumulate. But this can be 
avoided by placing the front at random points uniformly distributed around the true location of 
the discontinuity. Holt remarks that the accuracy of the random choice method improves when 
the 8's are close to equidistribution on [- 1/2; l/2].34 Colella found that the best procedure to 
select 8 is provided by the van der Corput ~equence.~' This was confirmed by Finlayson.' 

When applied to hyperbolic equations, the random choice method has the advantge of being 
unconditionally stable. Nevertheless, in order to construct a global solution by superposing the 
solutions of the individual Riemann problems, it is necessary that the Courant-Friedrichs-Lewy 
(CFL) condition be satisfied. For the gl-form of the ideal chromatographic equation, this is 

The random choice method also has the advantage that it does not introduce numerical diffusion. 
Therefore, a discontinuity can be convected without deformation. 

It remains that the performances of the random choice method strongly depend on our ability 
to solve the Riemann problem accurately and rapidly. For the chromatography problem, there is 
a convenient approximate solution: 

c1;-'/2 for 8A(<$vdA.t, 
If c1;-'I2 < ~ l ! - ' ' ~ ,  w(<+OAt,  tk)= ~ l f - ' / '  for 0 A t 2 ) u r A z ,  (23) 

+(C1:-1/2+Clk-1/2 ) otherwise. i 
The derivation of this equation follows work by Sod on non-linear Burgers eq~at ion. '~  c l c  and 
cl,  denote the left and right states of the Riemann problem. us is the shock speed. ud and or are the 
velocities to the left and to the right of the Riemann solution, respectively. Note that, in 
opposition to methods in conservation form, the random choice method requires these three 
velocities to be known explicitly. For the adsorption problem they are 

The fact that us, ul and u, are strictly positive can be used to lower the computational time. 
Indeed, when the van der Corput sequence is used in the way recommended by H ~ l t , ~ l  the value 
of 0 turns out to be positive when the solution is advanced from t" to t"+1/2 and strictly negative 
when it is advanced from T " + ' / ~  to z"+'. Thus, in the second case ( O e O ) ,  the solution to the 
Riemann problem at each node is simply the left state and no calculation needs to be preformed. 

It should also be noted that for the ideal chromatographic equation there is an exact solution 
to the Riemann problem. Equation (23) represents a more general formulation since, in many 
other applications, the Riemann problem cannot be solved exactly. Furthermore, we found that 
results obtained with both the exact and the approximate Riemann solutions were almost 
identical. Therefore, we only show results obtained with Sod's approximate solution. 
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When there is diffusion, the hyperbolic equation is first solved according to the preceding 
explanations and the solution is called el*. Then a diffusion step is added to give the final 
solution' 

Explicit Euler-Lagrange method. The Euler-Lagrange method uses a moving mesh. To start, 
we rewrite the modelling equation as 

Then, following work by Thomaidis et al.,42 an explicit scheme is used to solve the diffu- 
sion step: 

el:+, -c1: cll-cl:-, 

(27) 
Dcli icl""-cl~ - 1 1 At: At?- 1 

(K)== AT ~ ( c l l )  Pe  +(At: +A<?- 1) 

Note that the grid spacing A[ has been replaced by A t i = t i + l - t i ,  since in a moving grid the 
distance between two nodes can vary. In the expression above, we have also introduced a special 
notation, namely gin+'. This is because equation (27) provides values of the concentration at the 
new time but on the old mesh. In order to obtain the final solution we need to add the convection 
step: 

< y " = < l + v r A ~ .  (28)  
This is equivalent to moving the solution along the appropriate charateristic. Thus, the velocity 
o in the relation above will, in general, be l/a(cll). When there is a shock, however, the shock 
speed must be calculated according to equation (6). 

Therefore, one of the difficulty with this version of the Euler-Lagrange method is that we must 
be able to know, at each time step, if there is a shock and, if so where it is. In addition, since nodes 
move with different speeds, two successive points can either become too distant or too close (and 
eventually cross). Thus, we need to be able to add nodes to keep a good resolution and to remove 
nodes so that the grid spacing is kept to a minimum value. All these constraints tend to make the 
programming of the method quite arduous. 

RESULTS AND DISCUSSION 

Ideal model 

All the numerical methods described above have been used to solve the test problem outlined in 
Section 1. Typical results are displayed in Figure 3(a)-(3h). The MacCormack method and the 
explicit Taylor-Galerkin method lead to solutions which oscillate. Typically, the 'lumped' 
Taylor-Galerkin scheme gives the largest overshoot. When no lumping is used, the overshoot is 
less important but the wiggles are more spread out. The other six methods do not exhibit 
oscillations. Instead, the first-order upstream finite difference and the TVD methods introduce 
a significant amount of numerical diffusion. The E N 0  and FCT solutions are also smoothed. 
However, the front discontinuity is kept steep and the sharp angles at each end of the rarefaction 
wave are not rounded excessively. The random choice and Euler-Lagrange methods give the best 
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Figure 3. Typical numerical solutions (line with symbols) to the test problem of Section 1 compared to the exact solution 
(plain line). (b) Taylor-Galerkin method with lumped time derivatives (black circles) and without lumping (clear circles). 
For all figures: cin = 1, T~~ = 0.75, zobp = hi ,  CL = 2, K = 2, E = 1.5. For figures (aHg): A( = 1/100, A T / A ~  = 1. For figure (h): 

ATmin=O.OO1, Atmax=O.Ol, A T ~ ~ ~ / A < ~ ~ ~ =  1, the initial mesh has 102 nodes at T=O,@OOl, 0.01,0.02, etc. 
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representation of the shock discontinuity. In both cases, the front is as sharp as the minimum 
spatial grid spacing allows it to be. For the random choice method, the trailing wave exhibits 
wiggles which are inherent to the randomness of the scheme. With the Euler-Lagrange method 
the largest part of the error comes from the approximation of the rarefaction wave. This is due to 
the fact that, as nodes get too far apart, new points have to be added (linear interpolation was 
used) in order to keep a good resolution. At the same time, however, some error is introduced. 

To analyse more precisely the accuracy of each numerical method, the error is defined as the 
1-norm of the difference between numerical and exact solution 

where td designates the exact location of the discontinuity. Each of the above integrals was 
evaluated with the trapezoidal rule. For each method, five calculations were carried out on an 
Apollo DN 2500 workstation. The ratio Az/A( was kept constant, while the number of grid 
points was varied from 51 to 101,201,401 and 801 (For the Euler-Lagrange method this was the 
initial number of nodes). The error evaluated for each case is plotted versus the computational 
time in Figure 4. 

Ideally, we would like the methods to lie in the lower left quadrant. In practice, however, the 
Error vs. CPU time curves lie on a diagonal going from the upper left corner to the lower right 
corner of the graph. In the situation represented in Figure 4, we see that the logarithm of the error 
is roughly a linear function of the logarithm of the computational cost. Figure 4 also helps 
visualizing the computational cost associated with each method. Among the schemes using 
a fixed mesh, the first-order upstream finite difference and random choice methods are the fastest 
for the same number of grid points. On the other hand, the sophistication of the high-resolution 
methods results in high computational cost. For instance, when 201 grid points are used, the 
FCT, TVD and E N 0  methods are, respectively, about 4,6 and 11 times slower than the random 
choice method. For the same situation, the FCT algorithm is about 1.5 times slower than the 
plain MacCormack method. However, the extra time spent by high-order methods usually results 
in a significant improvement of the accuracy of the computed solution. For example, Figure 
4 shows that, among the fixed mesh methods, the most precise is the FCT scheme. With a mesh of 
201 nodes, the flux-corrected MacCormack method gives an error of 4.4 x In the same 
situation, the random choice, ENO, TVD, MacCormack, Taylor-Galerkin, Taylor-Galerkin 
with lumped time derivatives and upstream finite difference methods led to an error which is 1.3, 
1.4, 2.0, 2.1, 22, 2.4 and 3.5 times bigger, respectively. 

Comparison between moving mesh and fixed mesh methods is complicated by the fact that 
each set of methods uses different numerical parameters. For instance, the Euler-Lagrange 
method does not use a constant time-step or a fixed number of nodes. Instead, a maximum 
time-step is specified and the distance between two nodes is kept in an interval [Atmin, A(,,,]. In 
addition, the moving mesh does not need to be uniform at the initial time. Nevertheless, to 
provide a comparison with the fixed grid methods, we decided to use the Euler-Lagrange method 
with an initially uniform mesh. At the starting time, the nodes are separated by Atmin and At,,, is 
set to 2Atmi,,. The maximum time-step is chosen so that A~max/A&,,ax equals the value of AT/A( for 
the fixed mesh techniques, that is AT,,.JA~,,~ = 0 7 5  in Figure 4. The Error vs. CPU time diagram 
shows that the explicit Euler-Lagrange method performs very well. For the test problem 
considered it is the second most accurate scheme behind the flux-corrected MacCormack 
method. With 201 nodes initially, the final error is 5.6 x loT3. Finally, the Euler-Lagrange 
method is rapid although it is not the fastest. 
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Figure4. Error versus computational time for the test problem of Section 1. c i n = l ,  7i,=0.75, ~ ~ ~ ~ , = 2 7 ~ , ,  a=2, K = 2 ,  
E = 1.5. For the fixed grid methods: A t  = 1/N, A7/Al =0.75. For the Euler-Lagrange method, the initial grid is uniform 

with N. grid points and Atmin= l/Ns, ACmax=2Atmin, ATma,/Atmai =0.75. 

Figure 4 is certainly helpful in determining which method is the best for this application. For 
example, let us imagine that we need to solve the ideal chromatography problem but that we 
cannot accept an absolute error greater than 0.002. Then from Figure 4, we see that the random 
choice method will be the fastest method to provide an acceptable solution, but the number of 
nodes needed will be close to 800. The flux-corrected MacCormack method will be the third 
fastest but it will require less memory space since just over 400 nodes will be sufficient to reach the 
0002 accuracy level. The Euler-Lagrange method would also be suited for such an application. 
The other methods, however, would clearly be inefficient. 

Of course, graphs such as Figure 4 can only give suggestions as to the best method. This is 
because the numerical parameters can take a great number of values, and each choice influences 
the performance of the numerical methods. For instance, to improve the computational time. one 
can increase the time-step while keeping the number of nodes constant. In general, this will lower 
the accuracy of the numerical approximation but, if A7 becomes too big, the method will 
eventually oscillate and grow unstable. 

Chromatographic column with axial difusion 

When diffusion is brought into the chromatographic model, the physical and numerical 
problems are completely changed. Figure 5 illustrates the effect of axial diffusion on the efficiency 
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Figure 5. Effect of axial diffusion on the outflow concentration curves. Response to a pulse (equation (5)) with cin = 1, 
ri,=O.l, a=2, K = 2 ,  E =  1.5. Solutions shown are for the E N G R o e  method (plain line) and TVD method (symbols). 

A<=1/50, Ar/A<= 1/20. 

of the chromatographic process. In this figure, the ENO-Roe and TVD methods have been used 
to model the response of the column to an injection of solute when the Peclet number varies from 
10000 to 10. The results of the simulation reflect what one should expect from physical 
considerations. When the column is very efficient (high Pe number), the pulse remains narrow 
with smoothed but steep edges. As diffusion increases, however, the band of solute becomes 
broader and steep concentration gradients disappear. 

Because of non-linearities, it is possible for steep gradients to develop in the presence of 
a significant amount of axial diffusion. This is shown in Figure 6 where, as the injection 
concentration is raised from 1 to 5, the band of solute becomes more and more asymmetrical. At 
the same time, the front edge of the non-linear wave becomes sharper, possibly leading to 
numerical difficulties. 

Figures 5 and 6 also show how results obtained with different methods compare. In 
Figure 5 the same parameters have been used for both methods. In the absence of steep gradients, 
the two solutions agree very well. As the PCclet number is raised, however, the two curves become 
different. This reveals the lesser accuracy of the TVD scheme and its inability to keep the front 
sharp. As the grid is further refined, visual observation indicates that both methods converge to 
a unique solution, but the E N 0  scheme reaches convergence with fewer grid points. 

With axial diffusion included in the model, there is no exact solution one could use to study 
thoroughly the computational efficiency of the numerical methods. Nevertheless, it appears that 
the conclusions drawn from Figure 4 remain valid but a few modifications need to be made when 
a sharp front develops in the presence of significant dispersion, as in Figure 6. In such a situation, 
methods that require an important number of mesh points to produce accurate results are 
penalized. This stems from the fact that, with diffusion, a practical stability condition is 
AT I PPeAt2/2, where p is a parameter that depends on the particular scheme used. Therefore, as 
A t  is decreased, the computational time grows much faster than in the ideal case where 
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Figure 6. Effect of non-linearity. Response to a pulse (equation (5)) of increasing intensity: cin = 1, 3 and 5, T~~ = 0.25, 
T,,,,.=~T~~, a=2, K=2,  E =  1.5. Solutions shown are for (a) the MacCormack method with flux-correction (plain line, 
Pe = 200, A t  = 1/80 and A T / A ~  = 1/2) and the random choice method (symbols, Pe = 200, A t  = 1/125 and A T / A ~  = 1/2); and 
(b) the explicit Euler-Lagrange method (symbols, Pe=200, uniform initial mesh with 201 nodes, Atmi,= 1/200, 
At,,, =2Atmin, A T , , , ~ ~ / A ( , ~ ~ = O ~ ~ )  and the first-order upstream finite difference method (plain line, Pe=400, A t  = 1/200 

and A T / A ~  = 112). 

the time-step is limited by an expression analogous to the CFL condition (except for the 
Euler-Lagrange method). For the case of Figure 6 when cin = 5, the flux-corrected MacCormack 
method required only 8.6 CPU seconds and 81 grid points to produce a concentration curve that 
did not change (within plotting accuracy) when a finer mesh was used. To match that curve, it was 
necessary to use 126 nodes with the random choice method and the computational time was 
slightly higher at 104 s. The Euler-Lagrange scheme required even more nodes (165 nodes in the 
final curve) and the computational cost jumped to 32.0s. It is worth noting that for these two 
methods, significant errors in the prediction of mass occur if the mesh has too few nodes. This is 
likely due to the presence of the non-linear function, a(cl), in the diffusion term. For the particular 
problem of Figure 6, the E N 0  method was as efficient as the Euler-Lagrange method since the 
solution (not shown) it gave with AC=O.Ol matched the FCT solution for cin=5 and was 
obtained in a CPU time of 32.6s. The performance of the other schemes were not as good. In 
particular, a more practical approach with the first-order upstream finite difference method is to 
compute the solution with Pe set to 400 instead of 200. Since with upwinding of the convection 
term, the dimensionless coefficient of diffusion is changed from 1/Pe to l/Pe+A</2, the amount 
of diffusion in the solution of Figure qb) really corresponds to a Pkclet number of 200 
(1/200= 1/400 +0*005/2). With that adjustment, the first-order upstream method and the other 
methods agree quite well, except for the highest injection concentrations where the effect of 
non-linearity is more important and where the finite difference method predicts a slightly sharper 
front. 
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CONCLUSION 

For one-dimensional non-linear, convective problems the random choice and explicit 
Euler-Lagrange methods are the most efficient schemes among those compared. The flux-cor- 
rected MacCormack method follows closely. However, for non-linear problems allowing the 
formation of steep fronts in the presence of significant diffusion, the FCT and random choice 
schemes appear to be the methods of choice. Obviously, there is not one single, best method 
among those we have investigated. Instead there are various good methods, each exhibiting 
different strengths and weaknesses. Naturally, such a study does not answer all the questions. For 
instance, how would the computational efficiencies of the methods compare for two-dimensional 
problems? This, however, is not a pressing concern for adsorption problems where complications 
come primarily from the increase in the number of (l)species, and/or (2)regions which are 
typically one-dimensional, or include a second dimension, but with no convection in that 
additional direction. We are confident that this study should be helpful in determining the most 
efficient method for similar applications. 
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